Extremal Graph Theory for Metric Dimension and Diameter

نویسندگان

  • M. Carmen Hernando
  • Mercè Mora
  • Ignacio M. Pelayo
  • Carlos Seara
  • David R. Wood
چکیده

A set of vertices S resolves a connected graph G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a resolving set of G. Let Gβ,D be the set of graphs with metric dimension β and diameter D. It is well-known that the minimum order of a graph in Gβ,D is exactly β + D. The first contribution of this paper is to characterise the graphs in Gβ,D with order β + D for all values of β and D. Such a characterisation was previously only known for D ≤ 2 or β ≤ 1. The second contribution is to determine the maximum order of a graph in Gβ,D for all values of D and β. Only a weak upper bound was previously known. the electronic journal of combinatorics 16 (2009), #R00 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selected Topics in the Extremal Graph Theory

Extremal problems in graph theory form a very wide research area. We study the following topics: the metric dimension of circulant graphs, the Wiener index of trees of given diameter, and the degree‐diameter problem for Cayley graphs. All three topics are connected to the study of distances in graphs. We give a short survey on the topics and present several new results.

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

Some Fixed Point Results on Intuitionistic Fuzzy Metric Spaces with a Graph

In 2006, Espinola and Kirk made a useful contribution on combining fixed point theoryand graph theory. Recently, Reich and Zaslavski studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In this paper, by using  the main idea of their work and the idea of combining fixed point theory on intuitionistic fuzzy metric spaces and graph theory, ...

متن کامل

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

متن کامل

Distance in Graphs

The distance between two vertices is the basis of the definition of several graph parameters including diameter, radius, average distance and metric dimension. These invariants are examined, especially how they relate to one another and to other graph invariants and their behaviour in certain graph classes. We also discuss characterizations of graph classes described in terms of distance or sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007